Week 4 - Monday

COMP 1800

Last time

- What did we talk about last time?
- Reading input with input()
- Conversion functions
 - int() to turn things into integers
 - **float()** to turn things into floating-point numbers
 - str() to turn things into strings
- Work time for assignments

Questions?

Cryptography

Cryptography

- "Secret writing"
- The art of encoding a message so that its meaning is hidden
- Cryptanalysis is breaking those codes

Encryption and decryption

- Encryption is the process of taking a message and encoding it
- Decryption is the process of decoding the code back into a message
- A **plaintext** is a message before encryption
- A **ciphertext** is the message in encrypted form
- A key is an extra piece of information used in the encryption process

Transposition cipher

- In a transposition cipher, the letters are reordered but their values are not changed
- Any transposition cipher is a permutation function of some kind

Example: Rail Fence Cipher

- In the rail fence cipher, a message is written vertically along a fixed number of "rails," wrapping back to the top when the bottom is reached
- To finish the encryption, the message is stored horizontally
- This is also known as a columnar transposition
- Encryption of "WE ARE DISCOVERED, FLEE AT ONCE" with three rails:

W	R		0	R	F	E	0	E
E	E	S	V	E	L	А	Ν	Х
А	D	С	E	D	E	Т	С	J

Ciphertext: WRIORFEOEEESVELANXADCEDETCJ

Even-odd shuffle

- We can do a simple transposition cipher by:
 - Putting all characters with even locations in a string
 - Putting all characters with odd locations in a string
 - Concatenating the odd string with the even string
- Example:
 - Plaintext: 'My hovercraft is full of eels'
 - Even characters: 'M oecati ulo es'
 - Odd characters: 'yhvrrf sfl fel'
 - Full ciphertext: 'yhvrrf sfl felM oecati ulo es'

Iterating over a string

- So far, we've only talked about using a for loop with a range () function
- We can use that to iterate over all the characters in a string by using the length of the string and indexing into it

```
for i in range(len(text)):
    print(text[i])
```

 We can also iterate over all the characters in a string directly with a for loop

for letter in text: # equivalent to loop above
 print(letter)

Even-odd encryption in Python

• Algorithm:

- Loop over all characters
 - Concatenate characters with even locations onto a special even string
 - Concatenate characters with odd locations onto a special odd string
- Concatenate the odd string with the even string and return the result

def evenOddEncrypt(plaintext):

Even-odd decryption in Python

- We can reverse the process to decrypt the ciphertext
- Algorithm:
 - Find half of the length
 - Slice the ciphertext into the odd characters before the halfway point
 - Slice the ciphertext into the even characters after the halfway point
 - Loop up to half the length, concatenating from both the even and odd characters into the result
 - If there's an extra even character, concatenate it
 - Return the result

def evenOddDecrypt(ciphertext):

Operations with Characters

Characters?

- So far, the only type we've talked about that contains text is the string type
- However, we sometimes need to be able to do operations on individual characters
- Specifically, it's nice to know where a character falls numerically in the giant list of all the possible characters

Sometimes it's useful to know the number

We can convert a string with a single character in it into an integer with the ord() function

number = ord('a') # number contains 97

It can also be useful to get the offset from a starting point, such as the beginning of the alphabet

```
letter = 'r'
number = ord(letter) - ord('a') + 1
# number is 18
```

What if you have a number?

 If you know the numerical value of a character, you can convert that number back into a string using the chr() function

```
letter = chr(97) # letter contains 'a'
```

As before, you can use an offset point

letter = chr(ord('A') + 13 - 1)
letter contains 'M', the 13th letter

ASCII table

- Everything in the computer is 1's and o's
- Each character has a number associated with it
- These numbers are sometimes listed in tables
- The ASCII table only covers 7 bits of information (0-127)
- NEVER EVER TYPE THESE NUMBERS IN CODE
- What's important to know:
 - All the characters are numbered
 - The uppercase letters are contiguous
 - The lowercase letters are contiguous
 - The numerical digits are contiguous

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	`	р
1	SOH	DC1 XON	ļ	1	Α	Q	а	q
2	STX	DC2	н	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	V	f	V
7	BEL	ETB	I	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- I	Y	i	У
Α	LF	SUB	*	:	J	Ζ	j	z
В	VT	ESC	+	:	K	[k	{
С	FF	FS		<	L	1	1	
D	CR	GS	-	=	M]	m	}
Ε	SO	RS		>	N	Α	n	~
F	SI	US	1	?	0	_	0	del

Shift Cipher

Definition

- A shift cipher encrypts a message by shifting all of the letters down in the alphabet
- Using the Latin alphabet, there are 26 (well, 25) possible shift ciphers
- We can model a shift cipher by thinking of the letters A, B, C,
 - ... Z as 0, 1, 2, ... 25
- Then, we let the key k be the shift
- For a given letter with value **x**:

encrypt (x) = (x + k) mod 26

Example: Caesar Cipher

- E("KILL EDWARD") = "NLOO HGZDUG"
- What is E("I DRINKYOUR MILKSHAKE")?
- What is D("EUHDNLWGRZQ")?
- This code was actually used by Julius Caesar who used it to send messages to his generals

Shift encryption in Python

• Algorithm:

- Loop over all characters
 - Convert character to ASCII value
 - Convert ASCII value to a value from o-25 by subtracting the value of 'A'
 - Add the key to the result
 - Compute the result modulus 26 (which makes numbers bigger than 25 wrap around)
 - Add back the value of 'A' to turn a value from o-25 back into an ASCII value
 - Turn the ASCII value back into a character and concatenate it onto the ciphertext
- Return the ciphertext

def shiftEncrypt(plaintext, key):

Shift decryption in Python

- Reversing the process to decrypt the ciphertext is simple
- All we need to do is "encrypt" the ciphertext with the negation of the key we used to encrypt
- For example, if we encrypted with a key of 7, we can decrypt by encrypting with a key of -7
- Our decrypt function should simply call the encrypt function with a negative key

```
def shiftDecryption(ciphertext, key):
```

Quick note

- Our implementation expects all input characters to be from
 'A' up to 'Z'
- That's why subtracting ord('A') will make the values be between 0 and 25
- Inputting strings that contain characters other than uppercase letters (e.g. digits, lowercase letters, punctuation) will cause strange results

Upcoming

Next time...

- Substitution ciphers
- Generating a random key

- Read Sections 3.5 and 3.6 of the textbook
- Work on Assignment 3